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Abstract

We report investigations concerning the mechanism for the audible sound generation of humming or ringing gels. As claimed
earlier, the sound stems from the resonance of shear modes within the gel body. We present evidence for this claim by comparing
the directly measured sound velocity, determined with a simple acoustic spectrometer, with the calculated one from measurements of
the shear modulus and the mass density. Data were collected for different gel porosities. Deviations at comparatively small porosities

are assumed as due to a frequency-dependent shear modulus.
© 2004 Elsevier B.V. All rights reserved.

PACS: 62.65.+k; 43.20.Jr; 82.70.Gg

1. Introduction

For about 50years, the sound propagation in porous
media has been investigated both theoretically and
experimentally, initiated by the theory developed by
Biot {1], originally intended to describe the sound prop-
agation in marine sediments. Applications ranged from
submarine oil recovery to measurements of the acoustic
properties of different natural porous minerals, e.g.
sandstone [2]. The theory was also applied early to the
description of acoustic properties of colloidal suspen-
sions [3]. Today, the interest focuses on advanced appli-
cations, e.g., on sound modes in liquid helium confined
in a porous medium [4]. A review of different regimes of
Biot’s theory by Johnson is available [5,6]. In addition,
the excellent book by Bourbié et al. [7] deserves mention.

Earlier work by Wood [8] is relevant here as well. He
gave a formula for the decrease of the sound velocity
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owing to air bubbles in a liquid, e.g. in sparkling
beverages.

The present contribution is devoted to gels. They con-
sist of a more or less rigid body with a sponge-like solid
structure that is filled with a liquid. For gels, Biot’s the-
ory predicts essentially three independent sound modes
[5]: a compression mode very much like the usual sound
propagation in a viscous liquid, however modified for
the presence of the solid frame according to Wood’s for-
mula. Second, a slow-wave, the sound velocity of which
is imaginary in the case of gels, corresponding to a dif-
fusive propagation of pressure within the network.
Third, a shear wave, which is overdamped in a viscous
liquid where the shear modulus vanishes. If excited, it
decays exponentially on a length scale § known as vis-
cous skin depth [9]. In gels, é is significantly larger than
the pore diameter. Accordingly, the gel liquid is effi-
ciently fixed by viscous forces in the porous gel body.

Experimentally, these predictions have been con-
firmed for a wide variety of materials. For gels, the diffu-
sive behavior of the slow-mode has been first established
by Tanaka et al. [10]. They observed a diffusive mode
in polymer gels and related the diffusion coefficient
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measured by dynamic light scattering to the elastic mod-
uli of the gel body. Later, the presence of propagating
compression and shear modes in gels has been estab-
lished by direct measurements of the sound velocity, as
well as in colloidal [11] and polymer gels [12], in aerogels
[13], and their precursors [14].

A second streamline for the present investigation con-
sists of the re-discovery of ‘ringing’ or ‘humming’ gels by
Hoffmann and co-workers, investigating microemul-
sions of high droplet concentration. Their structural
properties had been characterized extensively [15]. In
addition, Oetter and Hoffmann [16] described the re-
sponse of these gels to an acoustic stimulus and calcu-
lated elastic moduli from the determined sound
velocity. The quantitative description of their observa-
tion, however, remained a bit vague, and the interpreta-
tion of their results with respect to the relevant elastic
modulus seems even to be in contradiction to Biot’s the-
ory, to which they do not refer in their paper. Earlier
investigations of the acoustical properties of gels date
back to the time of Kohlrausch (1893); systematical
experiments on different factors influencing the sound
pitch are reported by Holmes et al. ! [17).

The present contribution is thought to join these
streamlines by new experiments. It was motivated by
the study of aerogel precursors (silica sponges filled with
alkanol) as hosts for the diffusion of colloidal particles. I
observed a strong humming of these highly porous
structures and investigated this effect upon variation of
the sample porosity.

The aim of this paper is to give evidence for my ear-
lier claim [18] that the humming of the gel samples orig-
inates from resonances of shear waves within the gel
body. For this purpose I shall start with a brief descrip-
tion of Biot’s theory with emphasis on its application to
gels. Subsequently, I shall demonstrate that the sound
velocity from the audible resonance is equal to that of
the predicted shear wave, which has been determined
independently from measurements of the shear modulus
and the material mass density.

2. Theoretical considerations

Biot’s theory describes phenomenologically the prop-
agation of acoustic waves in a porous, fluid-filled, mac-
roscopically homogeneous and isotropic body. Each
volume element of this body experiences an average dis-
placement of the fluid and the solid part, respectively.
The respective equations of motion are coupled by vis-
cous, as well as inertial, forces. The macroscopic mate-
rial properties that enter are the bulk moduli of the
fluid (K;) and the solid (K;) phase, the bulk modulus

! I thank the referee for drawing my attention to this work.

K, of the skeletal frame, the shear modulus G, and the
porosity ¢. I adopted the notation of Ref. [5], to which
I refer the reader for details.

General hydrodynamics predicts a crossover between
two distinct regimes that is governed by the viscous skin
depth, 6 = 2nlpe)'? [9], with # the (shear) viscosity of
the fluid phase and p¢ its mass density, w is the (angular)
frequency of a shear disturbance, e.g. produced by two
tangentially moving plates. For porous media, this
crossover separates a high-frequency from a low-fre-
quency regime, the crossover frequency o, = 2y/pa’
being related to the average pore size a of the medium.
Porous materials that exhibit pore sizes of the order of
100nm and less, like the silica gels of this study, are al-
ways in the low-frequency regime. This means that the
viscous skin depth is much larger than the characteristic
pore size, thus fixing the fluid by viscous forces. Further-
more, for gels the skeletal frame is generally much more
compressible than the pore fluid. A ‘gel limit’ can be
identified therefore by K, G < K.

Applying these considerations, the theory predicts the
following sound modes in the porous medium: First,
there is a fast compressional mode, which is very much
alike the longitudinal sound mode in pure liquids. The
sound velocity of this longitudinal mode is given by

CFL = Cp [l + —-———-—é'K;;fézG] ) (1)
where ¢ = Kn/p,, is Wood’s result [8] for the sound
velocity in a composite medium with K, = G =0, for
example a colloidal suspension, with mean density
Pm = ep¢ + (1 — €)ps. The bulk modulus of the composite
medium can be calculated assuming two different elastic
media in parallel, yielding for our case K' = eK;'+
(1 —¢e)K:'. The & in Eq. (1) represent the deviations
from Wood’s formula due to the finite stiffness of the
frame. ¢, = &(KnK¢)(K7' —K;')? and &, =4K¢/Km.
The sound attenuation can be calculated correspond-
ingly. The compression mode treated so far can be visu-
alized as a cooperative in-phase motion of fluid and
skeletal frame in a distinct volume element.

Second, there exists a slow compressional mode, cor-
responding to the out-of-phase motion of fluid and skel-
eton. The sound velocity of this wave is purely
imaginary,

4
C§L — _in, (2)
n

corresponding to an overdamped sound mode. k is the
permeability defined through Darcy’s law Q = —(kA/
n)Vp, which relates the volume flow rate Q through a
sample area A4 to an applied hydrostatic pressure gradi-
ent Vp. Eq. (2) can be used to calculate elastic constants
of gels from line width measurements by dynamic light
scattering, as performed by Tanaka et al. [10].
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Third, there is only one trivial shear mode, corre-
sponding to the out-of-phase movement of fluid and
skeleton. The sound velocity of this transversal wave is
given by

Accordingly, for porous media in the ‘gel limit’, from
theory one expects two propagating sound modes with
different sound velocities, which are determined by
Egs. (1) and (3). Notice that both modes are non-disper-
sive, i.e. the sound velocity is independent of frequency.

From G « K, one can already estimate that the lon-
gitudinal sound velocity cg; should be some orders of
magnitude higher than the transversal one, cr. I defer
the straightforward calculation of the eigenmodes of a
finite body to the following M?* section. However, an
educated guess unfolds that only ¢y could lead to audi-
ble frequencies, whereas cgy is almost always expected
to generate ultrasound.

3. Materials, methods and measurements
3.1. Gel preparation

The gel samples were prepared by base-catalyzed
hydrolysis of tetramethoxy-silane (TMOS) in the pres-
ence of a large amount of methanol (MeOH). A
0.1mol/dm® aqueous ammonia solution is added drop-
wise to TMOS under continuous stirring. Both liquids
have been mixed previously with an equal volume of
methanol. The final mixture contains water and TMOS
in a 4:1 molar ratio, which is twice the stoichiometric
amount necessary for the formation of SiO, from
TMOS. The methanol amount was chosen to yield the
desired porosity, the compositions can be found in Table
1. TMOS (purum, Fluka), 0.1 mol/dm? aqueous ammo-
nia solution (Aldrich) and MeOH (rein, Merck) were
used without further purification. TMOS is stored under
Ar atmosphere.

Table 1
Volumetric relations of the chemicals needed for the production of
Si0, gels with desired porosity, scaled linearly when necessary

Porosity, £ (%) MeOH, Vlem® H,0, V/iem® TMOS, Vicm®
94.0 549.6 144.0 295.2
94.5 587.2 132.0 270.6
95.0 624.7 120.0 246.0
95.5 662.2 108.0 214
96.0 699.7 96.0 196.8
96.5 737.3 84.0 172.2
97.0 774.8 72.0 147.6
97.5 812.3 60.0 123.0
98.0 849.8 48.0 98.4
99.0 924.9 24.0 492

After mixing, the liquid was left to stand approxi-
mately 5min with continuous stirring. Subsequently, it
was filled into containers suitable for the measurements
and stored at 22°C (air-conditioning).

The experimentally accessible porosities are restricted
by the gelation times. Whereas samples with porosities
smaller than 95.5% had to be cooled with a water/ice
mixture in order to prevent gelation already in the mix-
ing flask, samples with a porosity of 99% and higher did
not solidify within one month. Notice that the ammonia
concentration is an important parameter in this respect.
The first elastic response of samples with 97.5% porosity
appeared after approximately 10h.

After preparation, the gel samples suffer from metha-
nol evaporation. This can be avoided by a careful seal-
ing of the container, which was not always possible in
the present investigation. Alternatively, one may replace
the lost methanol, possibly taking provision for the
evaporation loss by an excess amount, or cover the gels
with an insoluble oil. The latter was avoided in the pre-
sent study, because the acoustic boundary condition as
well as the rheological measurements may be affected
in an unknown and irreproducible way. However, an ex-
cess amount of methanol may also influence the gel dur-
ing the aging process, as it could counteract the syneresis
or lead to partial swelling.

I refer to Refs. [19] for information about the gel/
aerogel structural properties in dependence of the pH
during preparation, and to Refs. [20] for information
about the structural changes during aging.

3.2. Determination of the gel mass density

For the determination of the gel density, the liquid
sample had been filled into polypropene syringes with
(4.67 £ 0.05)mm inner diameter, which were efficiently
sealed subsequently. After four days, the gel rod was taken
out of the syringe and cut into approximately 1 mm long
rods; thickness was assumed to be unchanged, strong
deviations would have been noticed. The rods were
put into air-tight transparent containers. The rod’s
weight and length were determined using a precision bal-
ance (resolution 1mg) and an inspection microscope,
equipped with a translation stage with a micrometer
gauge (resolution 0.01 mm). These comparatively coarse
resolutions turned out to be sufficient, the main error
being the difficult length determination owing to the
imperfect cut. The rods suffer from evaporation of meth-
anol, which was noticeable as the surface became
increasingly scabby. In order to assure reproducibility,
I reversed the order of weighing and length determina-
tion twice for three series of density determination.
The mass density data that were obtained for these three
independent runs are shown in Fig. 1. The dashed line in
Fig. 1 follows p =ep;+ (1 — &)ps, with pp= 790kg/m>
the methanol density, and p, = 2000kg/m> the skeletal
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Fig. 1. Mass density p of the gels as a function of porosity ¢. Three
different runs are indicated by different symbols. Triangles pointing
right: 94.5—98.0%, length determination first, mass determination
subsequently. Triangles pointing left: 98.0 — 94.5%, weight determina-
tion first, length determination subsequently. Drawn lines: see text.

density of the silica frame; this estimate is clearly insuf-
ficient to describe the measured mass density as a func-
tion of porosity. The solid line has been calculated
taking into account the remaining amount of water after
a stoichiometric reaction (cf. Section 3.1) with TMOS,
and the increased amount of methanol following the
reaction. In addition, the density p¢ of the resulting
methanol/water liquid mixture has been calculated tak-
ing into account the partial molar volumes of respective
compositions, data were taken from the CRC handbook
[21]. The experimental data follow this calculation very
closely, thus confirming at the same time the relation be-
tween the initial sample composition and desired poros-
ity (cf. Table 1).

3.3. Determination of the shear modulus

The viscoelastic properties of the samples were deter-
mined using an UDS 200 rheometer (Physica, Stuttgart,
Germany) in plate—plate configuration. The complex
shear modulus was measured applying a harmonic tor-
sional oscillation of the tool (MP 31, 50mm diameter)
with constant maximal shear stress (10 Pa). The samples
were filled into polystyrene dishes (55mm inner diame-
ter). The lid was sealed with teflon tape after gelation
and addition of a layer of 5Smm methanol in excess.
The rheological measurements were performed five days
after synthesis. The dish was fixed on the lower plate of
the rheometer with adhesive tape. After removing the
lid, the tool was lowered into the methanol layer under
normal force control. The downward movement of the
tool was stopped when the normal force exceeded
2.5N. This limit was established to yield reproducible re-
sults by former reference measurements with several gel
samples. The normal force relaxes insignificantly after-
wards. Linearity of the strain at the maximum stress
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Fig. 2. Real part of the shear modulus G’ of the gels as a function of
frequency f for different sample porosities ¢ as indicated to the right.
The error of the data points is below 10%, the lines connecting the data
points are thought for trend analysis only.

of 10 Pa was checked by repeating the measurement with
different stresses (1,...,50Pa) subsequent to every indi-
vidual measurement. Samples with ¢ = 98% were limited
with respect to this linearity to about 30Hz oscillation
frequency. The reproducibility of the measurements
was checked by investigating two samples for every gi-
ven porosity.

The results for the real part G’ of the shear modulus
(mean of two samples) are shown in Fig. 2. A plateau
value in G’ is readily observed for every sample porosity.
The reproducibility of this plateau value is better than
5%. The imaginary part G = 1kPa is almost independ-
ent of test frequency and sample porosity. Samples with
& = 98.0% exhibit a slightly smaller value of G .

3.4. Determination and evaluation of the acoustical
spectrum

The acoustic measurements are quite simple; I used a
condenser microphone (EM-4, Conrad Elektronik, Ger-
many), which comes with an internal amplifier and a
load resistor within a metal housing (10mm outer dia-
meter). Power is provided by an external 3-V-battery.
The microphone output was AC coupled to the high-
impedance input of a digital oscilloscope (9314, LeCroy,
USA). The oscilloscope performs a Fast Fourier Trans-
formation using 5000 data points of the signal trace. The
Nyquist frequency was 2.5 kHz, resulting in a frequency
step of 1 Hz. The applied Hamming window reduces the
frequency resolution to 1.4Hz. 30 FFT sweeps were
averaged to yield the final spectrogram.

Samples were contained in cylindrical glass vials with
plastic snap-in lids, the inner diameter of the vials was
27mm. They were filled with four different volumes of
gelling liquid, thus leading to four gel cylinders of differ-
ent height for every given porosity. The acoustical meas-
urements were performed eight days after synthesis. The
membrane of the condenser microphone was put into
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contact with the glass wall, the vial being held by hand
at its plastic lid. The wall was struck with a metallic
screw driver. The corresponding pressure pulse is re-
garded as a white-noise source that excites almost every
sound mode within the sample simultaneously, however,
possibly with different amplitude, depending on the
locus of the point of contact between screw driver and
glass cylinder. This was observed experimentally as the
increase in signal-to-noise ratio of the sound modes
was different for every pulse out of the 30 samples.
The oscilloscope is pre-triggered onto the excitement
signal with a delay of 0.05s, the time-base being 0.1s.
The amplitude of the oscillations, decaying in time,
was approximately 5mV, the amplitude of the excite-
ment pulse of the order of 25mV. Pre-trigger and a
20-mV-trigger level assured that the acoustic signal is
dominated by the sound modes of the gel and recorded
subsequent to a screw driver pulse only.

In order to reduce spurious ambient sound, the spec-
tra are divided by a reference spectrum obtained from a
glass vial filled to the same height with water. Besides a
strong 50-Hz-contribution, the background noise is at
least one order of magnitude smaller in amplitude.

Fig. 3 shows the acoustical spectrum obtained as de-
scribed above for a representative sample with 97.5%
porosity. The vertical thin lines represent the expected
resonance frequencies of a cylindrical, homogeneous
body with isotropic sound velocity. These can be calcu-
lated from the wave equation in cylindrical coordinates
r, 8, z, for the particle displacement £ in the sound field,
using a separation ansatz for these coordinates. The gen-
eral solution reads

& = &y exp(—iwt)J (k,r) cos(16) cos(k,z). 4)

200} i

150 i
U

— 100} i
ref
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Fig. 3. Normalized sound amplitude U as a function of frequency f for
one gel sample with & = 97.5%. Expected eigenfrequencies are indicated
for few modes: /=0, m, n even — solid; /=0; m, n odd — dashed.
Sonn=116Hz, f};;=181Hz. Parameters for the calculation are
H =36mm, 2R =28mm, and ¢r =4.1m/s. Eigenfrequencies / > 0 are
omitted for clarity, close to 200Hz are expected f;;3 = 198Hz and
f114=212Hz.

The resonance frequencies belong to modes with wave
vectors given by

(DZ
P-4, 5

which can be specified applying appropriate boundary
conditions. The eigenfrequencies for a rod of height H
and diameter 2R are given by

c | s m\2 n\2]'?
=3 Ge) + Gi) ] (©)
where w = 2nf has been used. u;,, is the mth root of the
Ith order Bessel function J;(k,r). Tabulated values have
been taken from Ref. [22]. The use of the u;,, implies
acoustically hard walls with a node of the particle dis-
placement in the cylinder’s cross-section. This is a good
approximation for the glass walls surrounding the gel.
However, the situation is less obvious in the z direction,
parallel to the axis of the cylinder, as the gel surface may
be deformed by the sound wave and the layer of metha-
nol on the surface might have to be taken into account.
If the gel surface were an acoustically hard wall, we
should observe the selection rule n =2,4,6,. .., meaning
that half a wavelength fits into the space between the gel
surface and the glass bottom. An acoustically soft sur-
face, however, would imply a quarter-wave fitting into
the height of the cylinder, with a wave crest on the gel
surface. This would yield the selection rule n = 1,3,5,...

From Fig. 3, we observe that both kinds of modes are
present in this experiment. A very formal explanation
can be given for this observation, if one calculates the
reflection coefficient of the (exponential decaying,
0 <0.1mm) shear wave at the gel/methanol interface,
using the respective impedance Z = pec. This yields
R = 0.6, implying that roughly half of the sound inten-
sity experiences the methanol layer on the gel surface
as an acoustically hard wall.

Fig. 3 shows a very satisfactory agreement between
calculated and experimental frequencies, bearing in
mind that only modes with [ = 0 are drawn for clearness
of the plot. The main fitting parameter between the
experimental result and Eq. (6) is the sound velocity,
which is et = 4.1 m/s for this particular sample. In addi-
tion, the sample height and width have to be slightly
modified (=1 mm) as compared to the measired physical
dimensions of the sample. This procedure can be justi-
fied by the observation that the glass bottom as well
as the gel surface are slightly curved and the inner diam-
eter of the glass vials has not been measured for every
individual sample. Note that the agreement between
measured spectrum and calculation is worse than re-
ported earlier [18]. The difference is most probably due
to stress caused by swelling of the gel owing to the excess
amount of methanol, which had not been added to the
samples earlier.
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With decreasing porosity, the satisfactory agreement
deteriorates. It is no longer always possible to find a
set of parameters where the first few resonance frequen-
cies are located at calculated positions. (Notice that ow-
ing to the tremendous number of modes, at higher
frequencies this can be remedied easily, but without sig-
nificance.) At the same time, less individual resonance
frequencies and lower sound amplitudes were observed.
Whereas the latter two observations may be readily ex-
plained by the increasing stiffness of the gel, the former
observation merits a further comment later.

The evaluation of the spectrum benefits from the lin-
ear relationship between acoustic pressure and signal
voltage, because no beat frequencies, sum frequencies,
or harmonics are generated by the detector. The fre-
quency response of the condenser microphone used is
constant between 20Hz and 18kHz.

4. Results and discussion

To determine the sound velocity from the acoustic
spectra, the procedure as described in the previous chap-
ter turned out to be too lengthy, and the detailed infor-
mation (mode assignment and frequency) as not
necessary. Therefore, I adopted a simpler approach.

The first visible resonance in the spectra (whatever its
amplitude is), is assumed to be the fundamental mode
Joui- In order to check this assumption, the respective
frequencies for different cylinder heights are fitted to a
common curve given by Eq. (6), with uy; ~ 2.405 and
n = 1. The result is shown in Fig. 4 for the samples under
study, the sound velocity is the only fit parameter. Miss-
ing samples were destroyed during the measurements. In
general, good agreement between measurement and pre-
diction is observed. Again, the agreement deteriorates

1200
1000
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600

Hz

400

200

10 15 20 25 30 35
H/ mm

Fig. 4. Fundamental sound mode frequency fy;; as a function of
cylinder height H for different gel samples. A fit to the theoretical
expression (solid lines, see text) was used to determine the sound
velocity er. Sample porosity increases from top to bottom from 94.5%
to 98% as in Fig. 2.

with decreasing porosity and, correspondingly, increas-
ing acoustic frequencies.

With decreasing porosity, naturally, the volume of
the skeleton material increases at the expense of the lig-
uid volume, leading to an increase of the mass density of
the porous body (cf. Fig. 1). The shear modulus, how-
ever, increases at the same time by one or two orders
of magnitude (cf. Fig. 2), indicating that not only the
walls become thicker, but also the link density between
the walls increases. In accordance with Eq. (3), this
should lead to an increase in transversal sound velocity.

The corresponding data are shown in Fig. 5, which
confirms this expectation. The open squares stand for
the sound velocity calculated according to Eq. (3), using
the plateau value of the shear modulus determined from
Fig. 2 and the respective mass density from Fig. 1. A lin-
ear fit to the calculated data is shown as well, together
with a 95% confidence band. The solid circles are the
sound velocities as obtained from the acoustical meas-
urements represented by the data shown in Fig. 4.

Excellent agreement between calculated and meas-
ured data for the transversal sound velocity between
&= 96% and 98% is observed. There is no fit parameter,
and I regard this close agreement between acoustical
measurement and rheological prediction as the desired
evidence that the audible sound generation from the gels
originates from resonances of the shear waves within the
gel body.

Below & = 96%, the data deviate increasingly. From
Fig. 4, it can be read that every resonance frequency
within these gels is higher than approximately 500 Hz.
Fig. 2 shows that the rheometer can determine strain
data in a linear fashion up to approximately 60 Hz only.
Correspondingly, 1 attribute the increasing deviation of

aof i ' ' ' ]
25t 3 ]

20F :

£ (%)

Fig. 5. Transversal sound velocity ¢y as a function of gel sample
porosity &, (0) Calculated values, using the plateau modulus G’ and
the mass density p; a linear fit to these data (—) and a 95% confidence
band (---) are also plotted. (@) Experimental acoustic resonance data
as obtained from Fig. 4. Error bars are drawn if larger than the
symbol.
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the acoustical and rheological data to an increase of the
shear modulus with frequency. A plot according to Fig.
2 drawn for higher frequencies would no longer show a
plateau, but a shear modulus increasing with frequency.
Unfortunately, this assumption cannot be verified with-
in the scope of the present contribution. On the other
hand, if this explanation could be confirmed, it would
allow the application of acoustic measurements as pre-
sented in this contribution for the determination of
shear moduli at higher frequencies.

At the same time, this observation explains why sam-
ples with low porosity exhibit stronger deviations be-
tween observed resonance frequencies and calculated
eigenmodes. As the sound velocity is no longer a simple
parameter, but frequency dependent, the calculation of
the spectra gets prohibitively complicated. Note that
the dispersion is non-linear (cf. Eq. (3)).

In conclusion let me stress that this paper gives, for
the first time, an explanation for the strange humming
observed in some kind of gels. The audible emission
originates from a resonance of shear modes within the
gel body. If the shear moduli were known in advance,
this finding would allow the assembly of a gel xylophone
by using gel cylinders of appropriate height and poros-
ity. In addition, the effect could eventually be applied
for the determination of shear moduli at frequencies
where no conventional rheometer is available.
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