Progr Colloid Polym Sci (2000) 115:325-328
© Springer-Verlag 2000

NEW IN COLLOID AND SURFACTANT SCIENCE

C. Sinn

C. Sinn*

Institut fiir Physik der
Johannes-Gutenberg-Universitit
Staudingerweg 7

55099 Mainz, Germany

Present address:

* Institut fiir Angewandte Physik der
Universitidt Bern, Sidlerstrasse 5
3012 Bern, Switzerland

Tel.: +41-31-6318926

Fax: +41-31-6313765

Acoustic spectroscopy of aerogel precursors

Abstract We investigate the acous-
tical properties of silica gels, which
are precursors in the aerogel pro-
duction process. These gels exhibit a
strong “ringing gel” behavior, that is
they emit a characteristic sound if
one knocks against the container.
We study this sound emission with a
very simple spectroscopic technique
and observe resonances which are
characteristic for natural frequencies
of a cylindrical body. From a fit of
the experimental frequency positions

to calculated values, we determine a
sound velocity of cr = 4 m/s for a
gel sample with porosity ¢ =97.5%.
This low sound velocity can only be
interpreted as the transverse sound
mode predicted by Biot’s theory
for sound propagation in porous
media.
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Introduction

Some years ago, Oetter and Hoffmann [1] discovered a
strange behavior of a class of gels they were investigating.
Their gels emitted a characteristic sound upon hitting the
container. Oetter and Hoffmann termed this a “ringing
gel” or “humming gel” behavior and established this
property in a class of gels consisting of ternary phases of
a hydrocarbon, a surfactant, and water. The structure of
these phases has been investigated subsequently in detail
[2], although the physical explanation of the effect
remained rather indeterminate. A similar observation
had been reported earlier by Bacri et al. [3], but without
mentioning an audible sound emission of their polymer
gels.

Recently, we observed the same phenomenon to
occur for the precursors of the aerogel process that
consist of a highly porous silica network filled with an
alkanol. These precursors are frequently called the
“wet gel” or alcogel. If the alkanol is removed
supercritically, one obtains the aerogel as a rigid,
lightweight, and transparent body, where the silica
frame contributes only approximately 5% to the total
volume.

Having this porous structure in mind, we were tempted
to interpret the “ringing.gel” effect of the alcogels in terms
of Biot’s theory for sound propagation in porous media
[4], developed originally for the description of sound
propagation in submarine sediments. This theory has
been fruitfully applied to explain the elastic properties of
gels [5]. A review by Johnson [6] of the theory and its
relation to published experimental results is available.

In view of Biot’s theory, we suggest the following
explanation for the “ringing gel” behavior. Upon
knocking against the container, one excites a shear wave
in the gel, opposite to the more familiar compressional
waves. A compressional wave is present, too, but has
a sound velocity higher by some orders of magnitude.
The gel within the container forms a resonant body for
the shear wave. These resonances are responsible for the
audible sound that can be perceived if one hits the
container. This suggestion has been tested experimentally -
by simple acoustic spectroscopy, which will be intro-
duced in this contribution. We will further report the first
quantitative results of these experiments.

In what follows, we will start with a crude outline of
the theory involved, followed by a description of our
experiments and a concluding outlook.
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Sound propagation in porous media

Biot’s theory describes phenomenologically the propa-
gation of acoustic waves in a porous, fluid-filled,
macroscopically homogeneous and isotropic body. Each
volume element of this body experiences an average
displacement of the fluid and the solid part, respectively.
The respective equations of motion are coupled by
viscous, as well as inertial, forces. The macroscopic
material properties that enter are the bulk moduli of the
fluid (Kf) and the solid (K;) phase, the bulk modulus K}, of
the skeletal frame, the shear modulus G, and the porosity
¢. For details, we refer the reader to Johnson [6], the
notation of which we will follow as closely as possible.

General hydrodynamics predicts a crossover between
two distinct reglmes that is governed by the viscous skin
depth, § = 2/ pfw) [7], with # the viscosity and p¢ the
mass density of the fluid phase; w is the frequency of a
disturbance. For porous media this crossover separates a
high-frequency from a low-frequency regime, the cross-
over frequency . = 2%/ p;a* being related to the average
pore size a of the medium. Porous materials exhibit pore
sizes of the order of 100 nm and less. Therefore, we are
essentially always in the low-frequency regime, indicating
that the viscous skin depth is much larger than the
characteristic pore size. Furthermore, for gels the skeletal
frame is generally much more deformable than the pore
fluid. This “gel limit” is identified therefore by Kj,
G L K.

Applying these assumptions, the theory predicts the
following sound modes in the porous medium.

First, there is a fast compressional mode, which is very
much like the sound mode in pure liquids. The sound
velocity of this longitudinal mode is given by:

CFL = Co [1 + —é]Kz;;‘ézG]
where ¢ = Kn/py, is Wood’s result [8] for the sound
velocity in a composite medium with K, = G = 0, such
as a dispersion of air bubbles in water, or a colloidal
suspension. The bulk modulus of the composite medium
can be calculated assuming two different elastic media in
parallel, yielding for our case K;' = ¢/K¢ + (1 — ¢) /K.
The total density is p, = ¢ps+ (1 — ¢)p. The & in
Eq. (1) represent the deviations from Wood’s formula
ow1ng to the ﬁnlte stiffness of the frame: ¢, =
P (KnKp)(K' — K71 and &, = 4K¢/Ky. The sound
attenuation can be calculated correspondingly, but is of
little interest in the present context. The compressional
mode treated so far can be visnalized as a cooperative in-
phase motion of fluid and skeletal frame.

Second, there exists a slow compressional mode,
corresponding to the out-of-phase motion of fluid and
skeleton. The sound velocity of this wave is purely
imaginary:

“permeability defined
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corresponding to an overdamped sound mode; k is the
through Darcy’s law Q=
—(kA/n)Vp, which relates the volume flow rate Q
through a sample area 4 due to an applied hydrostatic
pressure gradient Vp. Equation (2) can be used to
calculate elastic constants of gels from linewidth mea-
surements by dynamic light scattering, as first performed
by Tanaka et al. [9].
Third, there is only one trivial shear mode, corre-
sponding to the in-phase movement of fluid and skeleton.
The sound velocity of this transversal wave is given by:

(G>1/2
cTr= | —
Pm

Accordingly, from theory one expects two propagating
sound modes in porous media with different sound
velocities, which are determined by Egs. (1) and (3).
Notice that from the “gel limit” G <« K, as men-
tioned above, one can already estimate that the longitu-
dinal sound velocity cpp should be some orders of
magnitude higher than the transversal one, cr.

3)

Materials and methods

Materials

The gels under investigation are prepared by base-catalyzed
hydrolysis of tetramethoxysilane (TMOS) in the presence of a
large amount of methanol. We use an aqueous solution of 0.1
mol/dm® ammonia as hydrolyzing agent. The molar ratio of water
to TMOS is chosen to 4:1, which is two times the stoichiometric
amount. For a gel sample w1th porosity of nominal ¢ = 97.5%, we
use 82.6 cm® methanol. Half of this amount is mlxed with 12.5 cm®

TMOS; the remaining amount is mixed with 6.1 cm® of the aqueous
ammonia solution. The aqueous solution is added dropwise to the
stirred TMOS solution at room temperature. After some minutes of
further stirring, the liquid is filled into cylindrical glass vials with
plastic snap-in lids. All reagents are of grade “purum” and were
used without further treatment. TMOS is stored under Ar
atmosphere.

Gelation occurs for this composition within approximately 12 h.
The composition has been chosen to yield the highest porous
material within acceptable gelation times.

The gels are known to exhibit an aging behavior. Accordingly,
the samples under study were stored approximately one week at
room temperature before use.

Experimental setup

For the acoustic spectroscopy, we use a small condensor micro-
phone capsule (Conrad Electronic), which is equipped with an
amplifier and a load resistor within the metal housing. Power is
provided by an external 3 V battery. The data sheet shows a linear
response over almost the whole frequency range of 20-18000 Hz.
The microphone output is AC coupled to the high impedance input
of a digital oscilloscope {(LeCroy 9314). The oscilloscope performs
a fast Fourier transformation (FFT) of 5000 data points of the
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signal trace. The Nyquist frequency was 2.5 kHz, yielding a
frequency step of 1 Hz. The FFT was calculated using a Hamming
window, which results in an only slightly poorer frequency
resolution of 1.4 Hz. Thirty FFT sweeps are averaged to yield
the final spectrogram.

The experimental procedure is as follows. The glass vial is
brought into contact with the condensor microphone, the vial being
hold by hand at its plastic lid. The glass is hit with a metallic
screwdriver to excite the sound modes of the gel. The oscilloscope is
pre-triggered onto this signal with a delay of 0.05 s, the time-base
being 0.1 s. These settings assure that the acoustic signal is
dominated by the sound modes of the gel, the excitement pulse
contributing only insignificantly. This statement was checked by
hitting the glass vial again during the recording period.

In order to eliminate further resonance frequencies stemming
from the glass container, we divide the data by those obtained from
a similar vial filled with methanol to the corresponding height. We
note that at low frequencies only contributions from the mains
frequency and the oscilloscope cooling fan were noticeable, the
latter one with comparably small amplitude.

Data evaluation

The result of the procedure as described is shown in Fig. 1 and
Fig. 2 as a thick solid curve. Many individual resonances can be
observed with varying strengths. We here concentrate on the
frequency position only.

The thin vertical lines represent the expected resonance
frequencies for a cylindrical sample. These can be calculated from
the wave equation in cylindrical coordinates r, 6, z, using a
separation ansatz for these coordinates. The well-known solution
leads to natural frequencies with wave vectors:
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which can be specified applying the appropriate boundary condi-
tions. For acoustically hard walls, which require a wave node on
the surface of the cylinder of height H and radius R, we obtain:

=5l G ]
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where @ = 2nf has been used; n = 2,4, 6 ... u;, is the m-th root of
the Bessel function of order /, which can be found, for example, in
Abramowitz and Stegun [10].

In our case, the glass walls, to which the gel properly sticks, can
be well approximated by hard walls. The gel-air surface, however,
may be regarded as acoustically soft. In this case, we would have a
node at the bottom of the glass vial and a crest at the surface.
Accordingly, the lowest mode in z-direction exhibited a quarter
wavelength instead of a half. The corresponding boundary
conditions would lead to Eq. (5) withn=1, 3,5 ...

Our experimental results, however, show that we need both
contributions, i.e., we observe all modes withrn = 1,2,3.4,5,6 ...
We interpret this observation in terms of a reflection coefficient (of
intensity) that does not equal 1. Indeed, using a sound velocity of
4 m/s we obtain a reflection coefficient of approximately 0.6. We
note, however, that shear waves do not propagate in isotropic
bodies like fluids, implying a reflection coefficient of 1. This
apparent contradiction cannot be resolved at present.

)

Resufts and discussion

Figure 1 shows exemplarily the results for a gel sample
with nominal porosity ¢ = 97.5%. The thick curveis the
experimental result, whereas the vertical thin lines

represent the calculations of the natural frequencies as
described above. For clarity, only resonances with / = 0
are shown. The inner diameter of the glass vials,
2R = 27 mm, and the height of the gel within the vial,
H = 27 mm, have been determined independently.
The sound velocity is then chosen such that the first
calculated resonance fits the first experimental peak. A
subsequent fine-tuning of ¢t and the sample dimensions
is performed for an optimal fit of all the resonances. We
note that the gel meniscus and the vial bottom are slightly
curved and the vial dimensions are not specified very
accurately. We observe a very close agreement between
experimental and calculated frequency positions, though
the peak at f = 175 Hz is not present in the calculation.
Note that the lowest resonance for / = 1 is expected at
f = 196 Hz. From Fig. 1, we determine a sound velocity
of er = 4.1 m/s.

Figure 2 shows the experimental result for the same
gel, but with different sample dimensions; the glass vial
has been simply filled with a smaller amount of liquid.
The fitted sound velocity is ¢r = 4.2 m/s, in close
agreement with the previous one. However, it is clearly
visible that the agreement between experimental data and
calculated resonance positions is not as good as before.
We regard this as an estimate for possible systematic
sources of error in the determination of the sound
velocity.

It remains to show that the determined sound velocity
is due to the shear mode as claimed above. To do so, we
have to determine the shear modulus and the density of
our samples as a function of porosity independently.
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Fig. 1 Normalized sound amplitude as a function of frequency for a
typical gel sample, ¢ = 97.5%. The sample dimensions, as obtained
from the fit, are H = 27 mm, 2R = 26 mm. The sound velocity is
cor = 4.1 m/s. Indices / = 0, m, n are indicated for a few modes
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Fig. 2 Normalized sound amplitude as a function of frequency of the
same gel as in Fig. 1, but with different sample dimensions:
H = 22mm, 2R = 27 mm. The sound velocity is ¢y = 4.2 m/s.
Indices / = 0, m, n are indicated for a few modes

These data can then be used to prove that Eq. (3)
quantitatively describes the sound velocity as measured
with the method introduced here. This will be demon-
strated in a future publication. For this contribution,
we restrict ourselves to numerical evidence.

The value of ¢, can be calculated according to Eq. (1)
using ¢ = 0.975, pr = 800 kg/m>, p, = 2000 kg/m>,
K; = 30 GPa, and K; = 0.71 GPa. The moduli have
been calculated from experimental sound velocity data

and the density of the bulk materials [5]. With these data
we obtain ¢y = 940 m/s, a value which is clearly incom-
patible with the result of our measurements. A quick
calculation shows that the &; do not alter this statement.

On the other hand, if we use Eq. (3) for the calculation
of the shear modulus of our sample, we obtain
G = 14 kPa. This value seems to be reasonable in view
of the data of Forest et al. [5], where the porosity was
significantly lower (¢ = 90%) than in the present study.
In addition, they report a longitudinal sound velocity of
the order of magnitude of ¢, as calculated above.

These calculations are a clear evidence for the
statement that the “ringing gel” effect is connected to
shear waves propagating in the porous material. In
addition, Biot’s theory is obviously applicable to the
systems under study, though a rigorous proof requires
the quantitative prediction of the sound velocity from
macroscopic data, as mentioned above.

The results presented in this contribution allow a
deeper insight into the nature of the “ringing gel” effect,
which is an immediately noticeable and striking property
of these soft materials. With some restrictions, one might
even think of assembling a jelly xylophone from these
materials, as the porosity of the samples can be varied
easily.
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